3.11.11 \(\int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx\) [1011]

3.11.11.1 Optimal result
3.11.11.2 Mathematica [A] (verified)
3.11.11.3 Rubi [A] (verified)
3.11.11.4 Maple [A] (verified)
3.11.11.5 Fricas [B] (verification not implemented)
3.11.11.6 Sympy [B] (verification not implemented)
3.11.11.7 Maxima [F]
3.11.11.8 Giac [B] (verification not implemented)
3.11.11.9 Mupad [B] (verification not implemented)

3.11.11.1 Optimal result

Integrand size = 23, antiderivative size = 221 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\frac {2 B \sqrt {x}}{c}-\frac {\sqrt {2} \left (b B-A c-\frac {b^2 B-A b c-2 a B c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \left (b B-A c+\frac {b^2 B-A b c-2 a B c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
2*B*x^(1/2)/c-arctan(2^(1/2)*c^(1/2)*x^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)) 
*2^(1/2)*(B*b-A*c+(A*b*c+2*B*a*c-B*b^2)/(-4*a*c+b^2)^(1/2))/c^(3/2)/(b-(-4 
*a*c+b^2)^(1/2))^(1/2)-arctan(2^(1/2)*c^(1/2)*x^(1/2)/(b+(-4*a*c+b^2)^(1/2 
))^(1/2))*2^(1/2)*(B*b-A*c+(-A*b*c-2*B*a*c+B*b^2)/(-4*a*c+b^2)^(1/2))/c^(3 
/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.11.11.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.19 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\frac {2 B \sqrt {x}}{c}-\frac {\sqrt {2} \left (-b^2 B+A b c+2 a B c+b B \sqrt {b^2-4 a c}-A c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{c^{3/2} \sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \left (b^2 B-A b c-2 a B c+b B \sqrt {b^2-4 a c}-A c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{c^{3/2} \sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \]

input
Integrate[(Sqrt[x]*(A + B*x))/(a + b*x + c*x^2),x]
 
output
(2*B*Sqrt[x])/c - (Sqrt[2]*(-(b^2*B) + A*b*c + 2*a*B*c + b*B*Sqrt[b^2 - 4* 
a*c] - A*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sq 
rt[b^2 - 4*a*c]]])/(c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) 
 - (Sqrt[2]*(b^2*B - A*b*c - 2*a*B*c + b*B*Sqrt[b^2 - 4*a*c] - A*c*Sqrt[b^ 
2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]]) 
/(c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])
 
3.11.11.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {1196, 25, 1197, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx\)

\(\Big \downarrow \) 1196

\(\displaystyle \frac {\int -\frac {a B+(b B-A c) x}{\sqrt {x} \left (c x^2+b x+a\right )}dx}{c}+\frac {2 B \sqrt {x}}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 B \sqrt {x}}{c}-\frac {\int \frac {a B+(b B-A c) x}{\sqrt {x} \left (c x^2+b x+a\right )}dx}{c}\)

\(\Big \downarrow \) 1197

\(\displaystyle \frac {2 B \sqrt {x}}{c}-\frac {2 \int \frac {a B+(b B-A c) x}{c x^2+b x+a}d\sqrt {x}}{c}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {2 B \sqrt {x}}{c}-\frac {2 \left (\frac {1}{2} \left (-\frac {-2 a B c-A b c+b^2 B}{\sqrt {b^2-4 a c}}-A c+b B\right ) \int \frac {1}{\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )+c x}d\sqrt {x}+\frac {1}{2} \left (\frac {-2 a B c-A b c+b^2 B}{\sqrt {b^2-4 a c}}-A c+b B\right ) \int \frac {1}{\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )+c x}d\sqrt {x}\right )}{c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 B \sqrt {x}}{c}-\frac {2 \left (\frac {\left (-\frac {-2 a B c-A b c+b^2 B}{\sqrt {b^2-4 a c}}-A c+b B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {-2 a B c-A b c+b^2 B}{\sqrt {b^2-4 a c}}-A c+b B\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}\right )}{c}\)

input
Int[(Sqrt[x]*(A + B*x))/(a + b*x + c*x^2),x]
 
output
(2*B*Sqrt[x])/c - (2*(((b*B - A*c - (b^2*B - A*b*c - 2*a*B*c)/Sqrt[b^2 - 4 
*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqr 
t[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b*B - A*c + (b^2*B - A*b*c - 
 2*a*B*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqr 
t[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])))/c
 

3.11.11.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1196
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + 
(c_.)*(x_)^2), x_Symbol] :> Simp[g*((d + e*x)^m/(c*m)), x] + Simp[1/c   Int 
[(d + e*x)^(m - 1)*(Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x]/(a + 
 b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[m] & 
& GtQ[m, 0]
 

rule 1197
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)), x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - 
b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; Fr 
eeQ[{a, b, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
3.11.11.4 Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 218, normalized size of antiderivative = 0.99

method result size
derivativedivides \(\frac {2 B \sqrt {x}}{c}-\frac {\left (A c \sqrt {-4 a c +b^{2}}-A b c -B b \sqrt {-4 a c +b^{2}}-2 B a c +B \,b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (A c \sqrt {-4 a c +b^{2}}+A b c -B b \sqrt {-4 a c +b^{2}}+2 B a c -B \,b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\) \(218\)
default \(\frac {2 B \sqrt {x}}{c}-\frac {\left (A c \sqrt {-4 a c +b^{2}}-A b c -B b \sqrt {-4 a c +b^{2}}-2 B a c +B \,b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (A c \sqrt {-4 a c +b^{2}}+A b c -B b \sqrt {-4 a c +b^{2}}+2 B a c -B \,b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\) \(218\)
risch \(\frac {2 B \sqrt {x}}{c}-\frac {\left (A c \sqrt {-4 a c +b^{2}}-A b c -B b \sqrt {-4 a c +b^{2}}-2 B a c +B \,b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (A c \sqrt {-4 a c +b^{2}}+A b c -B b \sqrt {-4 a c +b^{2}}+2 B a c -B \,b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c \sqrt {x}\, \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\) \(218\)

input
int((B*x+A)*x^(1/2)/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)
 
output
2*B*x^(1/2)/c-(A*c*(-4*a*c+b^2)^(1/2)-A*b*c-B*b*(-4*a*c+b^2)^(1/2)-2*B*a*c 
+B*b^2)/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arc 
tanh(c*x^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))+(A*c*(-4*a*c+b^2 
)^(1/2)+A*b*c-B*b*(-4*a*c+b^2)^(1/2)+2*B*a*c-B*b^2)/c/(-4*a*c+b^2)^(1/2)*2 
^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^(1/2)*2^(1/2)/((b+(-4*a 
*c+b^2)^(1/2))*c)^(1/2))
 
3.11.11.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2642 vs. \(2 (179) = 358\).

Time = 1.72 (sec) , antiderivative size = 2642, normalized size of antiderivative = 11.95 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\text {Too large to display} \]

input
integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")
 
output
1/2*(sqrt(2)*c*sqrt(-(B^2*b^3 + (4*A*B*a + A^2*b)*c^2 - (3*B^2*a*b + 2*A*B 
*b^2)*c + (b^2*c^3 - 4*a*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(A^2*B^2*a + 2*A 
^3*B*b)*c^3 + (B^4*a^2 + 4*A*B^3*a*b + 6*A^2*B^2*b^2)*c^2 - 2*(B^4*a*b^2 + 
 2*A*B^3*b^3)*c)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(sqrt(2)*(B 
^3*b^4 - 4*A^2*B*a*c^3 + (4*B^3*a^2 + 8*A*B^2*a*b + A^2*B*b^2)*c^2 - (5*B^ 
3*a*b^2 + 2*A*B^2*b^3)*c - (B*b^3*c^3 + 8*A*a*c^5 - 2*(2*B*a*b + A*b^2)*c^ 
4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(A^2*B^2*a + 2*A^3*B*b)*c^3 + (B^4*a^2 + 4* 
A*B^3*a*b + 6*A^2*B^2*b^2)*c^2 - 2*(B^4*a*b^2 + 2*A*B^3*b^3)*c)/(b^2*c^6 - 
 4*a*c^7)))*sqrt(-(B^2*b^3 + (4*A*B*a + A^2*b)*c^2 - (3*B^2*a*b + 2*A*B*b^ 
2)*c + (b^2*c^3 - 4*a*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(A^2*B^2*a + 2*A^3* 
B*b)*c^3 + (B^4*a^2 + 4*A*B^3*a*b + 6*A^2*B^2*b^2)*c^2 - 2*(B^4*a*b^2 + 2* 
A*B^3*b^3)*c)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)) + 4*(B^4*a*b^2 - 
A*B^3*b^3 - 3*A^3*B*b*c^2 + A^4*c^3 - (B^4*a^2 + A*B^3*a*b - 3*A^2*B^2*b^2 
)*c)*sqrt(x)) - sqrt(2)*c*sqrt(-(B^2*b^3 + (4*A*B*a + A^2*b)*c^2 - (3*B^2* 
a*b + 2*A*B*b^2)*c + (b^2*c^3 - 4*a*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(A^2* 
B^2*a + 2*A^3*B*b)*c^3 + (B^4*a^2 + 4*A*B^3*a*b + 6*A^2*B^2*b^2)*c^2 - 2*( 
B^4*a*b^2 + 2*A*B^3*b^3)*c)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log 
(-sqrt(2)*(B^3*b^4 - 4*A^2*B*a*c^3 + (4*B^3*a^2 + 8*A*B^2*a*b + A^2*B*b^2) 
*c^2 - (5*B^3*a*b^2 + 2*A*B^2*b^3)*c - (B*b^3*c^3 + 8*A*a*c^5 - 2*(2*B*a*b 
 + A*b^2)*c^4)*sqrt((B^4*b^4 + A^4*c^4 - 2*(A^2*B^2*a + 2*A^3*B*b)*c^3 ...
 
3.11.11.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 13942 vs. \(2 (202) = 404\).

Time = 6.35 (sec) , antiderivative size = 13942, normalized size of antiderivative = 63.09 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\text {Too large to display} \]

input
integrate((B*x+A)*x**(1/2)/(c*x**2+b*x+a),x)
 
output
Piecewise((-A*a*log(sqrt(x) - sqrt(-a/b))/(b**2*sqrt(-a/b)) + A*a*log(sqrt 
(x) + sqrt(-a/b))/(b**2*sqrt(-a/b)) + 2*A*sqrt(x)/b + B*a**2*log(sqrt(x) - 
 sqrt(-a/b))/(b**3*sqrt(-a/b)) - B*a**2*log(sqrt(x) + sqrt(-a/b))/(b**3*sq 
rt(-a/b)) - 2*B*a*sqrt(x)/b**2 + 2*B*x**(3/2)/(3*b), Eq(c, 0)), (A*log(sqr 
t(x) - sqrt(-b/c))/(c*sqrt(-b/c)) - A*log(sqrt(x) + sqrt(-b/c))/(c*sqrt(-b 
/c)) - B*b*log(sqrt(x) - sqrt(-b/c))/(c**2*sqrt(-b/c)) + B*b*log(sqrt(x) + 
 sqrt(-b/c))/(c**2*sqrt(-b/c)) + 2*B*sqrt(x)/c, Eq(a, 0)), (2*sqrt(2)*A*b* 
c*log(sqrt(x) - sqrt(2)*sqrt(-b/c)/2)/(4*b*c**2*sqrt(-b/c) + 8*c**3*x*sqrt 
(-b/c)) - 2*sqrt(2)*A*b*c*log(sqrt(x) + sqrt(2)*sqrt(-b/c)/2)/(4*b*c**2*sq 
rt(-b/c) + 8*c**3*x*sqrt(-b/c)) - 8*A*c**2*sqrt(x)*sqrt(-b/c)/(4*b*c**2*sq 
rt(-b/c) + 8*c**3*x*sqrt(-b/c)) + 4*sqrt(2)*A*c**2*x*log(sqrt(x) - sqrt(2) 
*sqrt(-b/c)/2)/(4*b*c**2*sqrt(-b/c) + 8*c**3*x*sqrt(-b/c)) - 4*sqrt(2)*A*c 
**2*x*log(sqrt(x) + sqrt(2)*sqrt(-b/c)/2)/(4*b*c**2*sqrt(-b/c) + 8*c**3*x* 
sqrt(-b/c)) - 3*sqrt(2)*B*b**2*log(sqrt(x) - sqrt(2)*sqrt(-b/c)/2)/(4*b*c* 
*2*sqrt(-b/c) + 8*c**3*x*sqrt(-b/c)) + 3*sqrt(2)*B*b**2*log(sqrt(x) + sqrt 
(2)*sqrt(-b/c)/2)/(4*b*c**2*sqrt(-b/c) + 8*c**3*x*sqrt(-b/c)) + 12*B*b*c*s 
qrt(x)*sqrt(-b/c)/(4*b*c**2*sqrt(-b/c) + 8*c**3*x*sqrt(-b/c)) - 6*sqrt(2)* 
B*b*c*x*log(sqrt(x) - sqrt(2)*sqrt(-b/c)/2)/(4*b*c**2*sqrt(-b/c) + 8*c**3* 
x*sqrt(-b/c)) + 6*sqrt(2)*B*b*c*x*log(sqrt(x) + sqrt(2)*sqrt(-b/c)/2)/(4*b 
*c**2*sqrt(-b/c) + 8*c**3*x*sqrt(-b/c)) + 16*B*c**2*x**(3/2)*sqrt(-b/c)...
 
3.11.11.7 Maxima [F]

\[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\int { \frac {{\left (B x + A\right )} \sqrt {x}}{c x^{2} + b x + a} \,d x } \]

input
integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")
 
output
integrate((B*x + A)*sqrt(x)/(c*x^2 + b*x + a), x)
 
3.11.11.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3186 vs. \(2 (179) = 358\).

Time = 0.78 (sec) , antiderivative size = 3186, normalized size of antiderivative = 14.42 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\text {Too large to display} \]

input
integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")
 
output
2*B*sqrt(x)/c + 1/4*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt 
(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a* 
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s 
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b* 
c + sqrt(b^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c 
^4)*A*c^2 - (2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 
4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s 
qrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*B 
*c^2 - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a 
*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + ...
 
3.11.11.9 Mupad [B] (verification not implemented)

Time = 11.13 (sec) , antiderivative size = 6401, normalized size of antiderivative = 28.96 \[ \int \frac {\sqrt {x} (A+B x)}{a+b x+c x^2} \, dx=\text {Too large to display} \]

input
int((x^(1/2)*(A + B*x))/(a + b*x + c*x^2),x)
 
output
(2*B*x^(1/2))/c - atan(((((8*(4*B*a^2*c^3 - B*a*b^2*c^2))/c - (8*x^(1/2)*( 
b^3*c^3 - 4*a*b*c^4)*(-(B^2*b^5 + A^2*b^3*c^2 - A^2*c^2*(-(4*a*c - b^2)^3) 
^(1/2) - B^2*b^2*(-(4*a*c - b^2)^3)^(1/2) - 2*A*B*b^4*c - 16*A*B*a^2*c^3 - 
 4*A^2*a*b*c^3 - 7*B^2*a*b^3*c + B^2*a*c*(-(4*a*c - b^2)^3)^(1/2) + 12*B^2 
*a^2*b*c^2 + 2*A*B*b*c*(-(4*a*c - b^2)^3)^(1/2) + 12*A*B*a*b^2*c^2)/(2*(16 
*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(B^2*b^5 + A^2*b^3*c^2 - A 
^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - B^2*b^2*(-(4*a*c - b^2)^3)^(1/2) - 2*A*B 
*b^4*c - 16*A*B*a^2*c^3 - 4*A^2*a*b*c^3 - 7*B^2*a*b^3*c + B^2*a*c*(-(4*a*c 
 - b^2)^3)^(1/2) + 12*B^2*a^2*b*c^2 + 2*A*B*b*c*(-(4*a*c - b^2)^3)^(1/2) + 
 12*A*B*a*b^2*c^2)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (8*x^ 
(1/2)*(B^2*b^4 - 2*A^2*a*c^3 + A^2*b^2*c^2 + 2*B^2*a^2*c^2 - 2*A*B*b^3*c - 
 4*B^2*a*b^2*c + 6*A*B*a*b*c^2))/c)*(-(B^2*b^5 + A^2*b^3*c^2 - A^2*c^2*(-( 
4*a*c - b^2)^3)^(1/2) - B^2*b^2*(-(4*a*c - b^2)^3)^(1/2) - 2*A*B*b^4*c - 1 
6*A*B*a^2*c^3 - 4*A^2*a*b*c^3 - 7*B^2*a*b^3*c + B^2*a*c*(-(4*a*c - b^2)^3) 
^(1/2) + 12*B^2*a^2*b*c^2 + 2*A*B*b*c*(-(4*a*c - b^2)^3)^(1/2) + 12*A*B*a* 
b^2*c^2)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*1i - (((8*(4*B*a^ 
2*c^3 - B*a*b^2*c^2))/c + (8*x^(1/2)*(b^3*c^3 - 4*a*b*c^4)*(-(B^2*b^5 + A^ 
2*b^3*c^2 - A^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - B^2*b^2*(-(4*a*c - b^2)^3)^ 
(1/2) - 2*A*B*b^4*c - 16*A*B*a^2*c^3 - 4*A^2*a*b*c^3 - 7*B^2*a*b^3*c + B^2 
*a*c*(-(4*a*c - b^2)^3)^(1/2) + 12*B^2*a^2*b*c^2 + 2*A*B*b*c*(-(4*a*c -...